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The development of a sys temat ic  theory of s t r eamer  breakdown of a gas requires  the con-  
s iderat ion of the t ranspor t  of the region of ionization toward the ionized gas in an electr ic  
field depending on the form of the s t r eamer ,  which in turn is determined by the t ranspor t  
mechanisms [1-3]. In this form the problem is very  complicated,and the theory takes the 
path of investigation of different qualitative models of a s t r e a m e r  [4]. It is assumed in [4] 
that the rates of anode-directed and ca thode-di rec ted  s t r e a m e r s  are determined by the 
drift  velocity of the e lec t rons .  The mechanism of propagation of anode-directed s t r e a m e r s  
is taken to be the development of avalanche from the leading front of the electrons t r ave l -  
ing to the anode. On the side of the cathode, e lectrons before the front of the cathode-  
directed s t r e a m e r  are produced due to the t ranspor t  of radiation f rom the ionized region 
[1]. It is shown in [5] that d i rec t  photo-ionization is ineffective because of the small  range 
of the quantas, and a mechanism of development of ca thode-directed s t r e a m e r  related to the 
associative ionization of excited atoms is proposed.  These atoms are formed by long-span 
resonance photons f rom the wings of the spec t ra l  line. An interest ing prediction of the 
theory [4] was a l inear dependence of the velocity of the s t r e a m e r s  on their  length. This de-  
pendence was conf i rmed in experiments  on the study of s t r e a m e r  breakdown initiated at the 
center  of the discharge gap in spark chambers  [6, 7]. At the same time, for s t r eamer s  de- 
veloping from avalanche initiated at one of the e lectrodes  the velocity of propagation of the 
"breakdown wave" remains  constant with a good accuracy  in gaps having lengths of the 
order  of 1 m. In the present  work a qualitative theory is developed which permits  one to 
calculate the velocity of the anode-directed s t r eamer  in the case where it is independent of 
the length. Since for p re s su res  of the order  of a tmospheric  p ressu re  the diffusion coeff i -  
cient of excited atoms [8] is comparable with the electron diffusion coefficient, the effect  of 
radiation t ranspor t  is d is regarded.  The stability of the front of the s t r e a m e r  to infinitely 
smal l  perturbat ions is investigated. It is shown that, when the finite thickness of the front 
is taken into considerat ion,  the s t r e a m e r  is stable.  It is unstable in the approximation of 
infinitely thin leading fronts.  

1. Basic Model. We consider  the homogeneous problem of propagation of an ionization wave in an 
e lectr ic  field di rected f rom the anode to the cathode (E x = -E ,  E > 0). For  a qualitative descript ion,  we 
shall assume that the electron mobility #e, the diffusion coefficient De, the recombination coefficient fi, 
and other nonexponentially varying quantities are constants .  In this assumption, taking all the quantities 
in the s teady-s ta te  regime to be functions of ~ = x - ut (u is the required velocity of propagation), we have 
the following sys tem of equations for an anode-directed s t r e a m e r  appearing at the cathode: 

One ~ O~ne 
- -  u--~--  -? ~o (Erie) - -  Do - - ~  = a (To) ~e Enne - -  f5 non~ (1.1) 

On i 
- -  u ~ = a (T~) p~,Enn, - -  [tn~nl (1.2) 

~E 
0~ = -- 4~te (nl --  n~) (1.3) 
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Here he, n i are concentrat ions of electrons and ions, ~(Te)~eEn is the ionization constant, n is the 
density of the gas, T e is the electron tempera ture ,  u e is the electronic thermal  conductivity proport ional  
to n e, I is the ionization potential, and ~ charac te r i zes  the energy losses of e lect rons  during collisions with 
the gas.  If the main mechanism is that of elastic losses ,  then 

2rn6 neTe 
M "% 

where r y  is the mean free time between elastic coll isions; in the case of inelastic losses ,  ~ ~ A e / ~ ' i n ,  _ 
where Ae is of the order  of the charac te r i s t i c  energy t r ans fe r red  in inelastic collision with frequency r i~ �9 

Equations (1.1) and (1 2) describe the balance of the number of electrons and ions (for ions we 
neglect their  mobility and diffusion along the field); (1.3) is Po i s son ' s  equation for the e lectr ic  field (e > 0). 
Equation (1.4) descr ibes  the energy balance of the e lectron gas taking into considerat ion the energy t r ans -  
port  by thermal  conductivity as well as in the drif t  motion of the e lec t rons  to the anode. The r ight-hand 
side of (1.4) contains joule heating, ionization energy,  and energy losses  in collisions of e lectrons with 
atoms of the gas .  In the absence of a field sys tem (1.1)-(1.4) descr ibes  the slow ionization wave discussed 
in [9]. 

Mathematically the problem of slow ionization wave is akin to the problem of propagation of slow 
combustion [10]. A r igorous mathematical  theory for problems of this type was developed for the f i r s t  t ime 
in [11]. 

A sys tem of equations analogous to (1.1)-(1.4) was investigated in [12, 13] for the ionization wave in 
a s t r e a m e r  breakdown. In these works the problem was solved under the assumption that the tempera ture  
is constant  within the transit ion layer .  This may lead to significant e r r o r s ,  since the ionization constant  
is an exponential function of the tempera ture .  In the equation of energy balance, t e rms  describing thermal  
conductivity and energy  losses of e lectrons in collisions with atoms were omitted. 

We note that in fields of the order  of 10 5 V / e r a  and at p re s su res  of the o rder  of the atmospheric  p r e s -  
sure,  the temperature  of e lect rons  in the ease where the mechanism of elast ic losses  is predominant  is 
~10 2 eV, i.e., significantly g rea te r  than the ionization energy.  Therefore ,  inelastic collisions play the main 
role in the energy balance of e lec t rons .  In this case  it can be assumed that within the width of the t r ans i -  
tion region, where effective ionization occurs ,  the distribution function of e lect rons  is adjusted to the local 
value of the e lectr ic  field, and the ionization coefficient a (Te) is a function of the e lectr ic  field intensity 
a(E) at the given point [14]. After this the sys tem of equations (1.1)-(1.3) is separated f rom Eq. (1.4), and 
it is sufficient to investigate it for the determination of u and the s t ructure  of the transi t ion layer .  

In the case of absence of ionization and recombination p rocesses ,  sys tem (1.1)-(1.3) descr ibes  the 
so-ca l led  electr ic  field wave in semiconductors  with N-shaped v o l t - a m p e r e  charac te r i s t i c  (see review in 
[15]). In the case under investigation the ionization and recombination p rocesses  are decisive.  We shall 
make use of the following model for the simplification of the problem.  Since the s t r e a m e r  propagates in 
the form of a nar row filament which gets smeared  out as a resul t  of relat ively slow process  of ambipolar 
diffusion, in a rough approximation the t ransverse  dimension of the s t r e a m e r  can be replaced by some 
average value r .  The basic mechanism of loss of charged part icles  in the main channel may be assumed to 
be the diffusion drift  to the sides, i.e., instead of the t e rm flnen i describing recombination in the r ight-  
hand side of Eqs.  (1.1), (1.2),we can write ne/~-, where r ~ r~/D a .  This replacement  retains the main 
charac te r i s t i c s  of the investigated phenomenon while considerably simplifying the mathemat ical  discussion.  

We subtract  Eq. (1.1) f rom (1.2) and make use of (1.3): 

u c32E c3 02he = 0 �9 (1.5) 
4ae 0 ~  p~ ~ (Ene)  q-  D~ 

Equation (1.5) has an integral .  Since for  ~ --* + ~ , n  e ~ 0, E ~ E ~  , we obtain 

One u OE = l lcEn~ __ De. ~ �9 (1.6) 
4~e O~ 

Equation (1.6) expresses  the law of conservation of the total cur ren t  made up of the displacement c u r -  
rent  ~ u 0 E / 0 ~ ,  the conduction cur ren t  ~]~eEne, and the diffusion cur ren t .  We shall seek the solution with 
boundary conditions at -~o : 
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E --* E 0 = c o n s t ,  ne "~ n_~ . 

It  is  e a s i l y  s e e n  f r o m  (1.6) tha t  in th i s  c a s e ,  n_~ = 0. If the e n e r g y  l o s s e s  of e l e c t r o n s  in the e x c i t a -  
t ion of gas  a t o m s  a r e  n e g l e c t e d  as  in [12, 13], then we obta in  n . ~  ~ 0. E q u a t i o n  (1.6) a d m i t s  of such  a 
f o r m  of the b o u n d a r y  c o n d i t i o n s :  

E o = O ,  n - ~  4 = 0  �9 

H o w e v e r ,  in the p r e s e n t  c a s e  th i s  i m p l i e s  a = 0, and t h e r e f o r e  th is  a p p r o a c h  is  i n a p p l i c a b l e .  

L e t  us  f i r s t  c o n s i d e r  the c a s e  w h e r e  the d i f fus ion  t e r m  in (1.6) is  s m a l l  c o m p a r e d  to  the conduc t ion  
c u r r e n t .  [In Eq .  (1.1) the  d i f fus ion  t e r m  can  be of the o r d e r  of the d i f f e r e n c e  of two " l a r g e "  t e r m s  
u0n e / 3~ and ~e 0 / ~ ~ (Ene),  a n d i t  should  be r e t a i n e d . ]  Subs t i t u t ing  

f r o m  (1.6) in to  (1.1) , we ob ta in  

rt  e 
u OE 

4ne~eE O~ 

u 0 ( 1 0 E ' ~  O~E De 0 3 [ I OE'~ OE 1 OE 
O~ ~lx~E a~ 

Equa t ion  (1.7) a l so  h a s  an i n t e g r a l  which  we w r i t e  t ak ing  accoun t  of the  cond i t ions  a t  --~ : 

E ( - -  oo) = Eo 
E 

E0 

L e t  us  c o n s i d e r  the  cond i t i on  at  +~  : 

E ~ E , ~  = c o n s t  �9 

I t  fo l lows  f r o m  (1.8) tha t  

E, 

= o �9 ( 1 . 9 )  

Equa t ion  (1.9) c o n n e c t s  the v a l u e s  of the f i e l d s  E 0 and Eoo and has  the f o r m  of the ru l e  of equa l  a r e a s .  
I t  can  be u s e d  for  the e s t i m a t e  of the b r e a k d o w n  i n t e n s i t y  E .  of a gap  of l eng th  d.  A s s u m i n g  fo r  the s a k e  
of d e f i n i t e n e s s  tha t  a ( E )  has  the f o r m  ~ e x p ( - A / E )  [14], we a p p r o x i m a t e l y  have  (E.o = E . )  

A ~ In Eo (1.10) 

L e t  us  e s t i m a t e  the va lue  of E 0 a s s u m i n g  tha t  the  c u r r e n t  in the i on i z e d  r e g i o n  is  ~a0E0 r2, w h e r e  if0 
is  the c o n d u c t i v i t y ,  and tha t  ou t s ide  th i s  r e g i o n  i t  is  d e t e r m i n e d  by  the d i s p l a c e m e n t  c u r r e n t  ~ U d C / d t ,  
w h e r e  U i s  the vo l t age  in the  gap  and C i s  the c a p a c i t a n c e  of the e l e c t r o d e - s t r e a m e r  s y s t e m  

C ~ S / 4 ~ d ,  d C / d t ~ S u / 4 z ~ d  2, u - - ~ t ~ E ,  �9 

S ince  E 0 o c c u r s  in (1.10) u n d e r  the  I o g a r i t h m  s ign ,  th i s  e s t i m a t e  i s  c o m p l e t e l y  s a t i s f a c t o r y .  As  a r e -  
su l t  we have  

E o  U S [XeE . 
d r~ 4azod (1.11) 

n~ (E,) d A ~  In 4z~~ 
TIZeE. ~" F~euS 

Condi t ion  (1.11) i s  an ana log  of the  Meek  [2] and R e f e r  [3J c o n d i t i o n s ,  which  in the no ta t ion  u s e d  h e r e  
have  the f o r m  

n a  ( E , )  d ~  20 . 

F o r  a p r a c t i c a l  u t i I i z a t i o n  of (1.11), for  ~- we can take  ~- ~ 10-8-10 -1~ s e e .  The r i g h t - h a n d  s ide  of (1.11) 
can  have  an o r d e r  of magn i tude  wi thout  v io l a t i ng  the cond i t i on  

47 



n a  ( E , )  d ~ 20 �9 

A t  the s a m e  t i m e  the r i g h t - h a n d  s ide  of (1.11) l i t e r a l l y  d i f f e r s  f r o m  th i s  cond i t ion  and is  a m e n a b l e  to e x -  
p e r i m e n t a l  v e r i f i c a t i o n .  

Condi t ion  (1.9) can  be g e n e r a l i z e d  to the c a s e  w h e r e  the r e m o v a l  of the p a r t i c l e s  f r o m  the m a i n  c h a n -  
ne l  is  of a r e c o m b i n a t i o n  n a t u r e .  Equa t ion  (1.8) a d m i t s  of a l o w e r i n g  of the o r d e r .  Us ing  the no ta t ion  

and p a s s i n g  on to d i m e n s i o n l e s s  quan t i t i e s  

t dE - F - ~  = y (g) 

such  tha t  

u z E = E ~ s ,  - ~ = •  ~ = , ~ = o  , Y = ~ l ( O n ~ o  

we obta in  

t de 

+; = +,+((+' - + )  -+i [~176 �9 (1.12) 

H e r e  we have  i n t r o d u c e d  the no ta t ion  

~eE~ 1 
~" = n~oD+ ' ~ (E) = ~o~ (E), 8 ---- - -  "qleF* oo nOto 

[The cond i t i on  for  n e g l e c t i n g  the d i f fus ion  t e r m  in (1.6) has  the f o r m  y >> 1 .] 

In the new v a r i a b l e s  cond i t ion  (1.9) b e c o m e s  

1 

5 + + [ ~  o.  
I~ 0 

The b o u n d a r y  cond i t i ons  fo r  Eq .  (1.12) a r e :  for  t = t 0 ,  77 = 0, and fo r  t = 1, 7? = 0, i . e . ,  the  i n t e g r a l  
c u r v e  of E q .  (1.12) m u s t  p a s s  t h rough  the two s i n g u l a r  po in t s  of t h i s  equa t ion .  Mul t ip ly ing  (1.12) by  ~? ( t )  
and i n t e g r a t i n g  o v e r  t f r o m  ~0 to 1 wi th  the b o u n d a r y  cond i t ions  t aken  into c o n s i d e r a t i o n ,  we o b t a i n  

~0 el+ ~o 

(1 .13 )  

Condi t ion  (1.13) can  be u s e d  to  d e t e r m i n e  the d i m e n s i o n l e s s  v e l o c i t y  ~t. We r e w r i t e  E q .  (1.12) in the 
fo l lowing f o r m :  

d_~_~ . r 0 (s) / z i (1 .14 )  

F o r  e c l o s e  to e0 

and for  t c l o s e  to 1 

0 (So) = 0, 0 (s) ~ 0o' (s - -  ~o), 0o' ~ -~-  

o ( 1 ) = o ,  o ( 0 ~ { o ~ ' l ( t - 8 ) ,  I o ~ { ~ : ( t )  . 

L e t  us  i n v e s t i g a t e  Eq .  (1.14) n e a r  the s i n g u l a r  po in t s  t = t0 ,  ~? = 0. We s h a l l  s e e k  the so lu t ion  in the 
f o r m  ~? = A(a - e0) .  A s s u m i n g  tha t  ~ t / t  0 >> 1, we obta in  

A ~--- \ 2e0 ] -4- 80 - -  2-'~- " (1.15) 
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The roo t s  of the c h a r a c t e r i s t i c  equat ion have d i f fe ren t  s igns ,  i .e . ,  the s ingu la r  point  ~ = e 0, ~? = 0 is 
a saddle  point  and the d e s i r e d  solut ion c o r r e s p o n d s  to the r o o t  (1.15). In x space  the solut ion has  the f o r m  

e = ~0 § C exp  (As0x) , 

and the c h a r a c t e r i s t i c  th ickness  of the r e a r  f ron t  is ~ u T .  

Near  the point  e = 1, ~? = 0, Eq .  (1.14) b e c o m e s  

d___~..~ ----- ~. [I  01 ' l  (~ - -  8) - -  ~] (~  - -  ~)] 1] -1 ( 1 . 1 6 )  
d8 

The c h a r a c t e r i s t i c  equat ion has  r ea l  roots  [if 7 ( ~ - 1 ) / 2  > (y 10 l '  I )1/2] of the s a m e  s ign (nodes):  

- 2 - - + { [ ~  2 - ~ , [ 0 , '  

Hence we obtain the condi t ion for  the ve loc i ty  

(1.17) 

o r  in d i m e n s i o n l e s s  f o r m  

~ > i  + 2] / / J0~ ' l  (1.18) 

As shown in [11], the ve loc i ty  

u > ~E~ -4- 2 ]/D~}x~E~n:t (E~) 

u = p~eE~ + 2]/D~p~eE~n:z (E~)  (1,19) 

is the l imi t ing  ve loc i ty  for  t - -  ~ for  all monotonic  solut ions  of an equat ion of this type .  

The obtained equat ion has  a s imple  phys ica l  meaning :  in the s y s t e m  of coo rd ina t e s  moving with the 
dr i f t  ve loc i ty  P e E ~ ,  the ionizat ion wave p ropaga t e s  due to e l e c t r o n  diffusion on c h a r a c t e r i s t i c  sca le  
,~ (De~" i )tfl , where  

�9 ~ ~ [~E~ n a  (E~)1-1 

is the mean  t ime between ionizing co l l i s ions ,  so that  the th ickness  of the leading f ront  is of the o r d e r  of 
(De/nc~ (E~ t#eE~o~/2, and the c h a r a c t e r i s t i c  ve loc i ty  is ~ (De/~- i) 1/~, which is r e f l ec t ed  in the second  t e r m  
in (1.19). F o r  7 >> 1 we have geE~  >> (De/~-i)l/2 . This  condit ion denotes  that  the ve loc i ty  of the mlode-  
d i r e c t e d  s t r e a m e r  is of the s a m e  o r d e r  of magni tude  as the dr i f t  ve loc i ty .  

The diffusion c o r r e c t i o n  to the ve loc i ty  of the s t r e a m e r  (1.19) cannot  exceed  the t e r m  c o r r e s p o n d i n g  
to the dr i f t  ve loc i ty  tree oo �9 Cons ide r ing  Eq .  (1.4) for  ~ - -  oo we obtain an upper  e s t ima te  for  the e l e c t r o n  
t e m p e r a t u r e  T e at  +~ : 

eEl/I> ~ (T~) n ( 1 . 2 0 )  

Condit ion (1.20) phys i ca l ly  means  that  only a p a r t  of the joule hea t  l i be ra t ed  before  the f ront  is used  
in ion iza t ion .  E s t i m a t i n g  the diffusion t e r m  in equat ion (1.19) with the help of this inequal i ty  and also m a k -  
ing use  of  the re la t ion  between the diffusion coef f i c i en t  and the mobi l i ty ,we  have 

2 V D~p~E~n:~ (E~) ~. 2~JF,~ ]/-T~/I-. 

It is evident  f r o m  he re  that  the second  t e r m  in equa t ion  (1.19) is a lways smaU c o m p a r e d  to the f i r s t  
in the cond4tions of appl icabi l i ty  of the p r e s e n t  d i s cus s ion .  Fo r  this r e a s o n  the m e c h a n i s m  of e l e c t r o n  di f -  
fusion cannot  ensu re  propaga t ion  of the c a t h o d e - d i r e c t e d  s t r e a m e r ,  and for  its inves t iga t ion  it is n e c e s s a r y  
to c o n s i d e r  the t r a n s p o r t  of  r ad ia t ion .  

2.  S tabi l i ty  of S t r e a m e r  F ron t .  An approx ima te  method of solut ion of  the s y s t e m  of equat ions  (1.1)-  
(1.3) p e r m i t s  one to find the u n p e r t u r b e d  s ta te  in the p r o b l e m  of s tab i l i ty  of the f ron t  of the s t r e a m e r .  Here  
the assumpt ion  7 >> 1 is not  r equ i red ,  and it is e a s y  to apply the method of s u c c e s s i v e  approx ima t ions  r e -  
fining the obtained so lu t ion .  F o r  ac tual  de t e rmina t i on  of the funct ions n e (~), ni(~ ), and E (~) with the r e -  
qui red  a c c u r a c y ,  s e v e r a l  i t e ra t ions  m u s t  be c a r r i e d  out.  
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R e p l a c i n g  the f i e ld  E in E q s .  (1.1) and (1.2) by  i t s  a s y m p t o t i c  va lue  at  •  we obta in  

O n  e " , O n  e O~n e n e 
- -  u . - g ~ - k ~ e E ( + - o o ) - - ~  - -  D e - g -  ~ = a [ E ( + . c o ) ] ~ % E ( + - c v ) n n e  .~ ( 2 . 1 )  

0rt4. 
- -  u ~ = a [ E  ( +  cr ~ e E  ( +  oo) n n e  - -  n..._.~_~ . (2.2) 

In p l a c e  of f i e ld  E we i n t r o d u c e  the p o t e n t i a l  

and write Poisson's equation 

E x : - -  Oq~ : - - E  
a~ 

0~ 4ne (hi - -  n~) 
0~2 

(2.3) 

E q u a t i o n s  (2.1)-(2.3) a r e  e a s i l y  s o l v e d  fo r  ~ > 0 and ~ < 0. The so lu t i ons  thus ob t a ined  m u s t  be 
m a t c h e d  a t  ~ = 0, t ak ing  into  c o n s i d e r a t i o n  the cond i t ions  

~ 1 ~ -  = nel0+ 

On e 
D e ~ -~- (u [Ix~Eo) n~ ] o- r 0% - -  = [ D~ --g~ - + (u - ixeE~176 ne ] o+ 

�9 0r c3(p 
,~ Io- = ,~  Io+, q~ Io- - -  q~ Io+, - i f -  o- = ~ io+ 

(2.4) 

The s e c o n d  condi t ion  in (2.4) i s  e a s i l y  ob ta ined  by i n t e g r a t i n g  (2.1) n e a r  ~ = 0. The r e l a t i o n  be tween  
the f i e ld s  at  +oo and -~o is  ob ta ined  f r o m  E q. (1.1), 

t i ons  

.~oo 

--co 

Find ing  the so lu t i on  and subs t i t u t i ng  i t  into (2.4), we obta in  the cond i t ion  of s o l v a b i l i t y  of t h e s e  e q u a -  

whe re  

5 3  

D e J \ W - ,  - - -W'~ /  D e ( 2 . 5 )  

L3 -1 _ u -- ~Eo + u -- ~Eo ~ -~ 
2D e - -  2D e D e 

I t  i s  a s s u m e d  tha t  

a (E~) ~t~nE~r ~ l/ 'v,  t1"~ ~ ~ (Eo) ~ n E o  �9 

F o r  

Eq .  (2.5) i s  s a t i s f i e d  i d e n t i c a l l y ,  s i n c e  in th is  c a s e  L l = I_.2. Th is  c o n f i r m s  the a s s u m p t i o n  tha t  the equa t ion  
ob ta ined  for  the v e l o c i t y  of the s t r e a m e r  is  v a l i d  wi thout  the u s e  of the cond i t ion  7 >> 1. 

Le t  us  now c o n s i d e r  the p r o b l e m  of s t a b i l i t y  of the s t r e a m e r  f r o n t .  L e t  the p e r t u r b e d  so lu t ion  depend  
on ~ = x -  u t ,  t ,  and y a c c o r d i n g  to the l aw ~exp(- i~0t  + i k y ) f ( ~ ) .  The s t a b i l i t y  to o n e - d i m e n s i o n a l  p e r -  
t u r b a t i o n s  tha t  do not  depend  on y is  d e t e r m i n e d  by the me thod  u s e d  in [16] in the p r o b l e m  of s t a b i l i t y  of the 
f r o n t  of a f l a m e .  Denot ing  the p e r t u r b e d  quan t i t i e s  by a p r i m e ,  we obta in  a s y s t e m  g e n e r a l i z i n g  s y s t e m s  
(2.1)-(2.3)  : 
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02ne~ [0r~e~ 
D~ ~ + ~ (u -- p~E (--4~ oo)) -~ n~' [%) -- D~k "z q- a [E (-~- oo)] ~t~nE (_-t= oc) - -  t/v] = 0 

On( [ c r  ~ ) ]  l x ~ n E ( ~ c r  +]=0 u ~ + ~om( + n~' 

O~r /Og ~ - -  k~q) ' = - -  4~e (n(  - -  n~') 

( 2 . 6 )  

(2.7) 

(2.8) 

The per turba t ions  are a s sumed  to die off at • ,and the asymptot ic  values  of the field E(~-r r ema in  
as be fore .  In the unper turbed p rob lem the solutions for  ~ > 0 and ~ < 0 were  matched at the f ront  ~ = 0. 
Now the matching should be done at the pe r tu rbed  boundary 

~' : A' exp (--  i(ot @ ikg) (2.9) 

Solving s y s t e m  (2.6)-(2.8) and matching the solutions at the pe r tu rbed  boundary (2.9), we obtain the 
condition of exis tence of a nontr ivial  solution 

whe re 

+i2-_ ~ ~ T J ~ + ~  l~(l+~co;~_/u) h z~ ~ = 

~,_ ;% l i t l t ] ( 2 . 1 0 )  
- [  ~3(~ + ~_/~) h (i : ko~d~)] [Z]? (T2 -5 -~i?) + -LV~ (Y2 --  Z;3) -~ ~(E+DL~ + E )  

X+-I = [" Fee ('Ec~ /'~ j TL~  2D~ J 

For  k = 0, os = 0, X+ = L 1 = L2, ) t  = L 3 condition (2.10) goes over  into (2.5); (2.10) plays the role  of a 
d i spers ion  equation, with which w(k) is found and the question of s tabi l i ty  is r e so lved .  Let  us cons ider  
(2.10) in the longwave l imi t  kL << 1. After  some s imple  computat ions ,  we obtain 

o) ~ - -  iD~k ~ q- 0 (k ~) . (2.11) 

Thus,  in the case  under  invest igat ion the f ront  is s table to infinitely sma l l  pe r tu rba t ions .  (In the 
case  kL >> 1 the solution is also stable.)  Phys ica l ly ,  equation(2.11) means  that  the deformat ions  of the front  
are  reducible  due to the diffusion of the pa r t i c les  f rom the ionized zone. 

Let  us cons ider  the question of s tabi l i ty  of a s t r e a m e r  in the approximat ion of infinitely thin leading 
f ront .  Le t  the veloci ty  of the boundary u(E) sa t i s fy  the condition 

(du /dE)o  : u '  ( E ~ )  > 0 . 

(In the p r e s e n t  case  this condition is sat isf ied.)  Outside the boundary (4 > 0) the unper turbed  potent ial  has  
the fo rm:  ~o = - E ~  ~. We deform the boundary in such a way that  the equation of the pe r tu rbed  boundary 
has  the fo rm (2.9). The per tu rba t ions  of the potential  a re  de te rmined  f rom P o i s s o n ' s  equation 

f r o m  which we obtain 

0 ~ ' / 0 ~  2 - - k 2 ~  ' = 0  

q~' = B exp ( - -  k~ q- iky  - -  io~t) . 

Requir ing that the potential  (~0 + ~0') be equal to ze ro  at the pe r tu rbed  boundary,  we obtain 

E ~  A ' -= B '  �9 

The per turba t ion  of the e l ec t r i c  field (of the component  normal  to the boundary) is 

E '  = k B '  exp ( - -  k~ + ikg - -  io~t) = k A ' E ~  exp ( - -  k~  + ikg  - -  io~t) . 

The per turba t ion  of the veloci ty  is given by the equation 

�9 ) u' = -3-i -=d~' --  ~coA' exp (-- i~t ~- ~kg) = (---d-KodU E' .  
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As a resu l t ,  for  the ra te  of growth of the per turba t ions ,  we obtain 

�9 [ \ d u  (2o12) 

In con t r a s t  to (2.11), equation (2.12) shows that  an infinitely thin f ront  is unstable with inc remen t  
T ~ ku. A s i m i l a r  pa t te rn  e m e r g e s  in the p rob lem of s tabi l i ty  of the front  of a f lame.  As shown by Landau 
[17], a f lame cons idered  as a sur face  of discontinuity is unstable with i nc remen t  ~ku.  At the same t ime,  a 
considera t ion  of the finite thickness  of the f ront  shows [18] that because  of the t h e r m a l  conductivity (neglect-  
ing the diffusion of the combustible)  the front  is s table to infinitely sma l l  pe r tu rba t ions .  The two inves t i -  
gated approaches  do not give solutions smoothly  pass ing f rom one to the other  in the l imit ,  when the wave-  
length is l a rge r  than the width of the front .  Apparent ly ,  this means  that the approximat ion of infinitely thin 
f ront  co r responds  to the investigation of per turba t ions  whose amplitude is large c o m p a r e d  to the thickness  
of the front  (this r e m a r k  was made by A. A. Vedenov).  

As a r e su l t  it may  happen that at the initial s tage,  when the width of the front  is la rge ,  the s t r e a m e r  
is s table  to infinitely smal l  per tu rba t ions  of the front .  At the l a t e r  s tage,  when the f ront  becomes  thin (this 
occurs  An the case  of propagat ion of a s t r e a m e r  developing far  f rom both e lec t rodes) ,  it is unstable to p e r -  
turbat ions  l a r g e r  than the width of the front .  S imi la r  physical  cons idera t ions  were  developed in [4]. 

The authors thank A. A. Vedenov, E .  P .  Velikhov, A. P .  Napartovich,  and O. B.  F i r sov  for valuable 
d i scuss ions .  
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